\qquad

Solving Non-Linear Systems Class Work

Objective: You will be able to solve and describe solutions to nonlinear systems.

When systems are non-linear (involving quadratics, cubic functions, etc.), the simplest method of solving is often by using a table of input-out values and/or visualizing solutions via graphing!

1. Determine how many solutions the system of equations will have. (Hint: Use your previous knowledge of functions to possibly sketch a graph.)

$$
\begin{aligned}
& y=x^{2}+3 \\
& y=-2
\end{aligned}
$$

2. Given the functions $m(x)=|x-3|+2$ and $n(x)=x^{2}+3$, determine the integer value(s) of x for which $m(x)=n(x)$.

Using a table of values:
Graphing (you may use your calculator)
3. Determine the integer solution to $1 / 2|x+2|-4=x^{2}-19$.

You may use your calculator to graph, but also support your answer with a table of input and output values.
4. Given the functions $k(x)=1 / 2|3 x-5|$ and $j(x)=-x^{2}+5$, which intervals contain a value of x for which $j(x)=k(x)$?
$\square-2 \leq x \leq-1$
$\square-1.5 \leq x \leq-0.5$
$\square-1 \leq x \leq 1$
$\square 0.5 \leq x \leq 1.5$
$\square 1.5 \leq x \leq 2.5$
$\square 3 \leq x \leq 4$
5. Given the functions $p(x)=-|4 x-3|$ and $q(x)=3 x^{2}-12$, which intervals contain a value of x for which $p(x)=q(x)$?
$\square-9 \leq x \leq-7$
$\square-4 \leq x \leq-3$
$\square-1.5 \leq x \leq-0.5$
$\square 0.5 \leq \mathrm{x} \leq 1$
$\square 1 \leq \mathrm{x} \leq 1.3$
$\square 1.3 \leq x \leq 2$
6. Functions g and h are defined below. The graphs of $y=g(x)$ and $y=h(x)$ intersect at point P.

$$
g(x)=\frac{3}{x} \quad h(x)=\frac{x^{2}}{2}
$$

Determine the x-coordinate of P . Round your answer to the nearest tenth.
7. Functions h and k are defined below.

The graphs of $y=h(x)$ and $y=k(x)$ intersect at point P.

$$
h(x)=\frac{5}{x} \quad k(x)=\frac{2 x^{2}}{3}
$$

Determine the x-coordinate of P . Round your answer to the nearest tenth.
\qquad
\qquad
8. For each system of equations, determine the number of solutions.

System	No Points of Intersection	One Point of Intersection	Two Points of Intersection
$y=3-x^{2}$ $y=3$	\square	\square	\square
$y=3-x^{2}$ $y=2-x$	\square	\square	\square
$y=3-x^{2}$ $y=5-x$	\square	\square	\square

9. Without using your calculator, determine how many points of intersection will occur between the functions $y=3 x^{2}+1$ and $y=9$. Explain.
10. Functions r and s are defined below.

The graphs of $y=r(x)$ and $y=s(x)$ intersect at point P.

$$
r(x)=\frac{4}{x^{2}} \quad h(x)=-x^{2}
$$

Determine the x-coordinate of P. Round your answer to the nearest tenth.
11. Given the functions $f(x)=(-x)^{3}-2$ and $g(x)=7-x$, which interval(s) contain a value of x for which $f(x)=g(x)$?
$\square-7 \leq x \leq-6$
$\square-2.5 \leq x \leq-1.5$
$\square 0.5 \leq \mathrm{x} \leq 1.5$
$\square 0.5 \leq x \leq 1$
$\square 6 \leq x \leq 7$
$\square 9 \leq x \leq 10$

Exit Ticket:

1. Given the functions $w(x)=|x-4|$ and $v(x)=x^{2}-2$, determine the integer value(s) of x for which $w(x)=v(x)$. Describe two ways to determine the solution, as well as what the solution represents.
2. Write any questions you still have regarding solving non-linear systems.
3. Create and solve any non-linear system problem that could be solved using the ideas we worked with today.
