\qquad Date:

Solving Three-Variable Systems Class Work

Objective: You will be able to solve systems of equations in which three variables are involved.

* The solution to a system of three equations with three variables exists at the point where all three of the planes intersect.

If the planes intersect in a line, there are infinite solutions, and If the planes are all parallel, then there are no solutions.

* Guided Example: Solve the system of equations:

$$
\begin{aligned}
& 12 x-2 y+8 z=43.6 \\
& -3 x+6 y+2 z=63.6 \\
& 8 x-9 y-4 z=-108.6
\end{aligned}
$$

\rightarrow Label each equation.
\rightarrow Create two pairs of equations and eliminate the same variable in each pair.
\rightarrow You should have two resulting equations! Create and solve a system from these equations.
\rightarrow Apply substitution to determine the third variable.
\rightarrow Check that your three variables hold for all three equations! :)
1.

$$
\begin{aligned}
& 3 x-2 y+8 z=-71 \\
& -2 x+4 y-2 z=42 \\
& 10 x+8 y-3 z=22
\end{aligned}
$$

2.

$$
\begin{aligned}
& 2 x-3 y+z=-21 \\
& -x+5 y-3 z=41 \\
& 3 x-4 y+5 z=-58
\end{aligned}
$$

\qquad

Extra Practice:

Solve the system:

$$
\begin{aligned}
& 4 b-2 w+3 h=80 \\
& -5 b+3 w-2 h=-92 \\
& -2 b-8 w-4 h=48
\end{aligned}
$$

p. I54 \# 26-38 evens, 46 , and 48

Option A: In your own words, describe the process of solving a system in three variables.

Option B: Create a system of three equations in which the solution is $(-I, 2,-3)$.

Option C: Write down any questions you still have regarding solving systems in three variables.

