\qquad

Sums and Differences of Cubes Class Work

Objective: You will be able to rewrite polynomial expressions in factored form, and use the factored form to solve equations.

Multiply each pair of polynomials.

a. $(z+4)\left(z^{2}-4 z+16\right)$
b. $(p-2)\left(p^{2}+2 p+4\right)$
c. $(n-5)\left(n^{2}+5 n+25\right)$
d. $(2 x-3)\left(4 x^{2}+6 x+9\right)$

Do you notice any patterns or relationships?!?
\star Sums and Differences of Cubes:
We can use these general formulas to factor binomials that are sums/differences of cubes:
(sum/difference)(1 $1^{\text {st }}$ value squared, opposite sign, $1^{\text {st* }} 2^{\text {nd }}$ values, positive $2^{\text {nd }}$ value squared) Guided Examples: Factoring
A. Factor $24 x^{3}-81$.
B. Factor $r^{6}+343$
*Check your work by multiplying!
Q Practice: Factor each binomial completely.

1. $w^{3}+125$
2. $54 x^{3}-2$
3. $\mathrm{p}^{6}-8 \mathrm{r}^{3}$
4. $b^{24}+512$
\qquad
\qquad
5. $500 \mathrm{~s}^{3}+32$
6. $3 h^{12}-192$
7. $8 m^{3}+27 n^{6}$
8. $x^{9}-y^{9}$

9. $3 x^{4}+3 x-2 x^{3}-2$

10. $2 x^{4}+5 x^{3}-16 x-40$

Guided Examples: Solving

C. Solve the equation $x^{3}-64=0$. State the multiplicity of each root.
*Note, solutions are also known as "roots."
D. Solve the equation $250 x^{3}+2=0$. State the multiplicity of each root.

Practice: Solve each equation, and state the multiplicity of each root.

1. $2 x^{3}-2000=0$
2. $32 x^{3}+4=0$
3. $3 x^{3}=-192$
4. $56 x^{4}-40 x^{3}=5-7 x$
5. $27 x^{4}+54 x^{3}-x=2$
6. $4 x^{4}-2 x^{3}-250 x=-125$
*Please write down any important reminder related to sums/differences of cubes OR a question you have related to sums/differences of cubes.
