Sums and Differences of Cubes Class Work

Store: You will be able to rewrite polynomial expressions in factored form, and use the factored form to solve equations.

✗ Multiply each pair of polynomials.

a.
$$(z + 4)(z^2 - 4z + 16)$$

b. $(p - 2)(p^2 + 2p + 4)$

c.
$$(n - 5)(n^2 + 5n + 25)$$

d. $(2x - 3)(4x^2 + 6x + 9)$

Do you notice any patterns or relationships?!?

★ Sums and Differences of Cubes:

We can use these general formulas to factor binomials that are sums/differences of cubes:

(sum/difference)(1st value squared, opposite sign, 1st*2nd values, positive 2nd value squared)

Guided Examples: Factoring

A. Factor 24x³ - 81.

B. Factor r⁶ + 343

*Check your work by multiplying!

Practice: Factor each binomial completely.	Ø	Practice:	Factor	each	binomial	completely.
---	---	-----------	--------	------	----------	-------------

1. w³ + 125 2. 54x³ - 2

3.
$$p^6 - 8r^3$$
 4. $b^{24} + 512$

5.
$$500s^3 + 32$$
 6. $3h^{12} - 192$

7.
$$8m^3 + 27n^6$$
 8. $x^9 - y^9$

9. $3x^4 + 3x - 2x^3 - 2$ 10. $2x^4 + 5x^3 - 16x - 40$

Guided Examples: Solving

C. Solve the equation $x^3 - 64 = 0$. State the multiplicity of each root. *Note, solutions are also known as "roots."

D. Solve the equation $250x^3 + 2 = 0$. State the multiplicity of each root.

Practice: Solve each equation, and state the multiplicity of each root.

1. $2x^3 - 2000 = 0$ 2. $32x^3 + 4 = 0$

3. $3x^3 = -192$

4. $56x^4 - 40x^3 = 5 - 7x$

5. $27x^4 + 54x^3 - x = 2$

6. $4x^4 - 2x^3 - 250x = -125$

*Please write down any important reminder related to sums/differences of cubes OR a question you have related to sums/differences of cubes.