Even and Odd Polynomial Functions Class Work

Solution: You will be able to identify & prove even and odd polynomial functions.

★ Even functions:

- A function is considered even when

*In other words, the graph of an even function is

- Prove that x^2 - 4 is even.

★ Odd functions:

- A function is considered odd when

*In other words, the graph of an odd function is

- Prove that x^3 - x is odd.

* Note that some functions are neither odd nor even!

Practice!

1. Identify each function as even, odd, or neither. Justify your answers completely.

a.
$$r(x) = (x + 1)^2$$

b. $t(x) = x^3 + 2x$

c.
$$g(x) = x^5 - 3x^3 + 4x^2$$

d. $m(x) = 3x^4 - 2x^2 - 1$

e.
$$n(x) = x^6 - 2x^2 - x$$
 e. $k(x) = 2x^9 - 3x$

2. Identify each function as even, odd, or neither. Support your choice.

Complete the following OUT OF ORDER. ©

- \star Create a function equation or a graph for an even function.
- * Create a function equation or a graph for an odd function.
- \star Create a function equation or a graph for a function that is neither even nor odd.

*Switch with a partner, and determine the evenness or oddness of their functions!