

$$\Gamma(s) = 5^{4} - 6s^{2} + 9$$

$$(s^{2} - 3)(s^{2} - 3) = C$$

$$S^{2} - 3 = 0 \quad 5^{2} = \sqrt{3} \quad (m \cdot 2)$$

$$S = \sqrt{3}(m \cdot 2)$$

$$S = -\sqrt{3}(m \cdot 2)$$

$$S = -\sqrt{3}(m \cdot 2)$$

$$S = \sqrt{3}(m \cdot 2)$$

Feb 2-8:44 AM

Polynomials with Imaginary Roots Class Work

 $\ensuremath{\, \boxtimes \,} \ensuremath{\, \textbf{Objective:}} \ensuremath{\, \textbf{You will be able to rewrite polynomials with imaginary roots.}$

Task A:

Which equation has imaginary factors, and why?

$$x^2 - 18 = 18$$

$$x^2 + 18 = -18$$

$$x^2 + 64 = -16x$$

$$x^2 - 80 = -16x$$

Task B: Which equation has *i* as a root, and why?

$$x^2 + 1 = 2x^2$$

$$\Box 4x^2 + 1 = 3x^2$$

$$\Box 4x^2 - 1 = 3x^2$$

$$x^2 - 1 = -2x^2$$

____ Unit 6 Class Work

EXPRESSIONS WITH IMAGINARY ROOTS:

Rewrite each expression as a single binomial.

a.
$$(3x-2i)(3x+2i)$$

b.
$$2y(y-3i)(y+3i)$$

c
$$(5k + 4i)(5k - 4i)$$

c.
$$(5k+4i)(5k-4i)$$
 d. $3(11+12i)(11-12i)$

Goal 2: State any relationships you noticed or observations you can make about the types of problems in a, b, c, and d.

Goal 3: Work Backwards! Express each binomial as a sum of two or three factors.

- a. $9r^2 + 169$ b. $8m^2 + 200$
- c. $400b^2 + 9$ d. $3x^3 + 48x$

Goal 4: Compare and contrast "difference of two squares," and "sum of two squares" expressions. How are they alike; how are the different? You may choose to create examples to support your claims! ©

Homework: Factor each expression.

- $1.4d^2 + 81$
- 2. $3x^2 + 147$
- 3. $36n^3 + 16n$ 4. $196f^4 + 121$

Solutions:

- 1. (2d + 9i)(2d 9i) 2. 3(x + 7i)(x 7i)
- 3. 4n(3n+2i)(3n-2i) 4. $(14f^2+11i)(14f^2-11i)$
- *Also remember to work on some Tenmarks! ©