\qquad

Solving Equations Involving Logarithms Class Work

Objective: You will be able to solve equations involving logarithms.

* Property of Equality

Example 1: Solve for x.

$$
\log _{13}(2 x-5)=\log _{13}(3 x+1)
$$

Example 2: Solve for x .

$$
\log _{3}(3 x)-\log _{3} 12=\log _{3}(x-2)
$$

Q Practice: Solve for the variable in each equation.

1. $\log _{5}(3 z+1)=\log _{5}(6 z-8)$
2. $\log _{2}(4 w)-\log _{2} 8=\log _{2}(6 w-1)$
3. $\log _{7}\left(y^{2}-2\right)=\log _{7}(2)$
4. $\ln (2 x)+\ln (x-3)=\ln 8$

Property of Equality: In general, if $\log _{b} x=\log _{b} y$, then \qquad

* Logarithmic \& Constant Equivalence

Example 3: Solve for x. Be sure to always check for extraneous solutions.

$$
\log _{2}(2 x)+\log _{2}(x-1)=4
$$

Practice: Solve for the variable in each equation. Be sure to check for extraneous solutions.

1. $\log _{5}(3 p)+\log _{5}(2 p+4)=2$
2. $\log (4 w)+\log (w+3)=3$
3. $\log _{9}(y)+\log _{9}(y-24)=2$
4. $\log (100 r)+\log (r-15)=4$
5. $\log _{2}(3 x)-\log _{2}(x-9)=-5$
6. $\log _{4}(2 s)-\log _{4}(s+1)=-1$
7. $\ln (4 x+3)=3$
8. $\ln (x-1)^{2}=9$
9. $\ln (2 x+3)=7$
10. $\ln (2 x-3)^{2}=8$

Exit Slip: Solve for the variable in each equation.

1. $\ln (3 x)+\ln (2 x-6)=\ln (60)$
2. $\log _{3}(2 m)+\log _{3}(m+6)=3$

Homework:

~ Solve for the variable in these 5 problems.

1. $\log _{3}(2 z-9)=\log _{3}(4 z+9)$
2. $\log _{2}(8 w)-\log _{2} 7=\log _{2}(2 w-5)$
3. $\log _{6}\left(x^{2}-10\right)=\log _{6}(15)$
4. $\ln (3 x)+\ln (x-7)=\ln 3$
5. $\log _{15}(2 \mathrm{c})+\log _{15}(\mathrm{c}-8)=\log _{15} 10$
~ pages 456~457 \#33-47 odd
~ page 465 \#15, 17, and 19
~ Throwback: page 460 \#119, 121, 123, and 127
