Solving Equations Involving Logarithms Class Work

Solve equations involving logarithms.

★ Property of Equality

Example 1: Solve for x.

 $\log_{13}(2x - 5) = \log_{13}(3x + 1)$

Example 2: Solve for x.

 $\log_3(3x) - \log_3 12 = \log_3(x - 2)$

Practice: Solve for the variable in each equation.

2. $\log_2(4w) - \log_2 8 = \log_2(6w - 1)$ 1. $\log_5(3z + 1) = \log_5(6z - 8)$

3. $\log_7(y^2 - 2) = \log_7(2)$ 4. $\ln(2x) + \ln(x - 3) = \ln 8$

★ Logarithmic & Constant Equivalence

Example 3: Solve for x. Be sure to always check for extraneous solutions.

 $\log_2(2x) + \log_2(x - 1) = 4$

Practice: Solve for the variable in each equation. Be sure to check for extraneous solutions.

1. $\log_5(3p) + \log_5(2p + 4) = 2$ 2. $\log(4w) + \log(w + 3) = 3$

3. $\log_9(y) + \log_9(y - 24) = 2$ 4. $\log(100r) + \log(r - 15) = 4$ 5. $\log_2(3x) - \log_2(x - 9) = -5$

6. $\log_4(2s) - \log_4(s + 1) = -1$

7. $\ln(4x + 3) = 3$

8. $\ln(x-1)^2 = 9$

9. $\ln(2x + 3) = 7$

10. $\ln(2x - 3)^2 = 8$

Exit Slip: Solve for the variable in each equation.

1. $\ln(3x) + \ln(2x - 6) = \ln(60)$

2. $\log_3(2m) + \log_3(m + 6) = 3$

Homework:

- Solve for the variable in these 5 problems.

- 1. $\log_3(2z 9) = \log_3(4z + 9)$
- 2. $\log_2(8w) \log_2 7 = \log_2(2w 5)$
- 3. $\log_6(x^2 10) = \log_6(15)$
- 4. $\ln(3x) + \ln(x 7) = \ln 3$
- 5. $\log_{15}(2c) + \log_{15}(c 8) = \log_{15}10$

~ pages 456~457 #33 - 47 odd

~ page 465 #15, 17, and 19

~ Throwback: page 460 #119, 121, 123, and 127