Rewriting Radical Expressions Using Exponents Class Work

Objective: You will be able to rewrite radical expressions using exponents.

Quick Review!

* RATIONAL EXPONENT PROPERTY

$$\sqrt[n]{x^m} =$$

★ Integer Exponent Properties

Example	Generalization
$x^3 * x^4 =$	$X^m * X^n =$
x^5	x^m
$\overline{x^2} =$	$\sqrt{x^n} =$
$(x^3)^2$ =	$(x^m)^n =$

Zero & Negative Exponents: Can you discover the pattern?!

$$2^{3} =$$
 _____ $2^{2} =$ _____ $2^{1} =$ _____ $2^{0} =$ _____ $2^{-1} =$ _____ $2^{-2} =$ _____

Guided Example A: Simplify $\frac{\sqrt{49x^3y^5}*x^2}{y}$ (no radicals in final expression for today).

Guided Example B: Simplify $\frac{\sqrt{x^4y^{-5}}*(x^2)^8}{y^{12}}$ (no radicals in final expression for today).

1.
$$\frac{d^{-1}}{(3c^{-2})^3*2d}$$

$$2. \ \frac{\sqrt[3]{27k^9v^2}*(v^2)^3}{k^{10}}$$

$$3 \cdot \left(\frac{\sqrt{36v^2w}}{w^3} \right)^{-1}$$

4.
$$\left(\frac{\sqrt[3]{p^9q^4}}{(p^3)^{-4}}\right)^{-1}$$

$$5 \cdot \left(\frac{\sqrt{100x^4z}}{x^2 \sqrt{z}} \right)^2$$

6.
$$\frac{p^3 * \sqrt{p} * p}{(p^{-3})^3}$$

$$7. \ \frac{3(\sqrt{p})^5}{\sqrt[3]{p}}$$

8.
$$\frac{27(\sqrt{rs})^3}{3\sqrt[4]{rs^2}}$$

9.
$$\sqrt{4x^3y^{-1}}*(2x^3y^{-2})^3$$

10.
$$(3x^2y^{-1})^4 * \sqrt[3]{125xy^{-6}}$$

11.
$$\sqrt[3]{(x+y)^7}$$

12.
$$\sqrt[5]{(m-n)^3}$$

13.
$$\sqrt[5]{\sqrt{(c+d)^{-3}}}$$

14.
$$\frac{\sqrt[5]{\sqrt{(yz)^{-1}}}}{v^2 7}$$

$$2\sqrt{bcd} - 8\sqrt{bc^3} + 6\sqrt{bd^2}$$

$$14\sqrt{vw} - 56\sqrt{v^5w} - 28\sqrt{w}$$
 16.

Write any questions you still have regarding simplifying expressions using exponents.

★ MIXED PRACTICE: Simplify each expression.

Express your final expressions in both forms (radical and exponent), where applicable.

1.
$$(m^3n^2)^{\frac{3}{4}}$$

2.
$$(x^2y^3)^{\frac{1}{2}}$$

3.
$$x^{\frac{3}{2}} * x^{\frac{1}{3}}$$

4.
$$(-64y)^{\frac{5}{3}}$$

5.
$$\frac{(8z)}{(8z)^{\frac{3}{2}}}$$

6.
$$\frac{2(z)^{\frac{1}{4}}}{z^{\frac{1}{3}}}$$

7.
$$\left((-8x^2)^{\frac{1}{3}} \right)^{-2}$$

8.
$$\left((b^3 c^5)^{\frac{2}{3}} \right)^{-\frac{1}{2}}$$

$$9. \ \frac{x^{\frac{1}{3}}y^{\frac{3}{2}}}{x^{\frac{-1}{2}}y}$$

10.
$$\left(\frac{2w^{\frac{3}{4}}y^{\frac{1}{2}}}{\frac{1}{w^{\frac{1}{2}}}}\right)^{-2}$$

11.
$$\left(\frac{r^2s^{\frac{5}{2}}}{r^{\frac{1}{2}}s}\right)^{-3}$$

12.
$$\left(\frac{27r^3s}{r^6s^{\frac{1}{5}}}\right)^{-\frac{1}{3}}$$

*Create! Create any expression involving a radical and at least two variables. Switch with a partner, and simplify each other's expressions! ©